Problem 14: Dynamic Hydrophobicity

When a drop of liquid impacts on a horizontally moving surface, the droplet may be reflected or not, depending on the speed of the surface. Investigate the interaction
between a moving surface and a liquid drop.

 

I. Phenomenon Demonstration

II. Books, Encyclopedia, Discussion and Forum Posts

III. Research Paper

  • Gilet, Tristan & Bush, John. (2009). The fluid trampoline: Droplets bouncing on a soap film. Journal of Fluid Mechanics. 625. 167 – 203. 10.1017/S0022112008005442. 
  • Chen, X., Mandre, S. and Feng, J. J. (2006). Partial coalescence between a drop and a liquid-liquid interface, Physics of Fluids 18(5): 051705.
  • Basu, Saikat & Yawar, Ali & Concha, Andres & Bandi, M. (2017). On angled bounce-off impact of a drop impinging on a flowing soap film. Fluid Dynamics Research. 49. 10.1088/1873-7005/aa9280. 
  • Richard, D., Clanet, C. & Quéré, D. Contact time of a bouncing drop. Nature 417, 811 (2002). https://doi.org/10.1038/417811a
  • Zou, Jun & Wang, Wei & Ji, Chen & Pan, Min. (2017). Droplets passing through a soap film. Physics of Fluids. 29. 062110. 10.1063/1.4986798. 
  • THORODDSEN, S. T., TAKEHARA, K., ETOH, T. G., & HATSUKI, Y. (2005). Puncturing a drop using surfactants. Journal of Fluid Mechanics, 530, 295–304. doi:10.1017/s0022112005003745 
  • Gilet, Tristan & Bush, John. (2012). Droplets bouncing on a wet, inclined surface. Physics of Fluids. 24. 10.1063/1.4771605. 
  • Lhuissier, Henri & Tagawa, Yoshiyuki & Tran, Tuan & Sun, Chao. (2013). Levitation of a drop over a moving surface. Journal of Fluid Mechanics. 733. 10.1017/jfm.2013.470. 
  • Zen, T.-S., Chou, F.-C., & Ma, J.-L. (2010). Ethanol drop impact on an inclined moving surface. International Communications in Heat and Mass Transfer, 37(8), 1025–1030. doi:10.1016/j.icheatmasstransfer.2010.05.003 
  • Almohammadi, H., & Amirfazli, A. (2017). Understanding the drop impact on moving hydrophilic and hydrophobic surfaces. Soft Matter, 13(10), 2040–2053. doi:10.1039/c6sm02514e 
  • Chen, R. H., & Wang, H. W. (2005). Effects of tangential speed on low-normal-speed liquid drop impact on a non-wettable solid surface. Experiments in Fluids, 39(4), 754–760. doi:10.1007/s00348-005-0008-6 
  • Kolinski, J. M., Mahadevan, L., & Rubinstein, S. M. (2014). Lift-Off Instability During the Impact of a Drop on a Solid Surface. Physical Review Letters, 112(13). doi:10.1103/physrevlett.112.134501 
  • BAYER, I. S., & MEGARIDIS, C. M. (2006). Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics. Journal of Fluid Mechanics, 558, 415. doi:10.1017/s0022112006000231 
  • Aboud, D. G. K., & Kietzig, A.-M. (2015). Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability. Langmuir, 31(36), 10100–10111. doi:10.1021/acs.langmuir.5b02447 
  • Bird, J. C., Tsai, S. S. H., & Stone, H. A. (2009). Inclined to splash: triggering and inhibiting a splash with tangential velocity. New Journal of Physics, 11(6), 063017. doi:10.1088/1367-2630/11/6/063017 
  • Povarov, O. A., Nazarov, O. I., Ignat’evskaya, L. A., & Nikol’skii, A. I. (1976). Interaction of drops with boundary layer on rotating surface. Journal of Engineering Physics, 31(6), 1453–1456. doi:10.1007/bf00860580 
  • Rein, M. (1993). Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Research, 12(2), 61–93. doi:10.1016/0169-5983(93)90106-k 
  • Yarin, A. L. (2006). DROP IMPACT DYNAMICS: Splashing, Spreading, Receding, Bouncing…. Annual Review of Fluid Mechanics, 38(1), 159–192. doi:10.1146/annurev.fluid.38.050304.092144 
  • Range, K., & Feuillebois, F. (1998). Influence of Surface Roughness on Liquid Drop Impact. Journal of Colloid and Interface Science, 203(1), 16–30. doi:10.1006/jcis.1998.5518 
  • Xu, L., Zhang, W. W., & Nagel, S. R. (2005). Drop Splashing on a Dry Smooth Surface. Physical Review Letters, 94(18). doi:10.1103/physrevlett.94.184505 
  • Chandra, S., & Avedisian, C. T. (1991). On the Collision of a Droplet with a Solid Surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 432(1884), 13–41. doi:10.1098/rspa.1991.0002 
  • Stow, C. D., & Hadfield, M. G. (1981). An Experimental Investigation of Fluid Flow Resulting from the Impact of a Water Drop with an Unyielding Dry Surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(1755), 419–441. doi:10.1098/rspa.1981.0002 
  • Šikalo, Š., Tropea, C., & Ganić, E. N. (2005). Impact of droplets onto inclined surfaces. Journal of Colloid and Interface Science, 286(2), 661–669. doi:10.1016/j.jcis.2005.01.050
  • Lunkad, S. F., Buwa, V. V., & Nigam, K. D. P. (2007). Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chemical Engineering Science, 62(24), 7214–7224. doi:10.1016/j.ces.2007.07.036 
  • Jeong, H. J., Hwang, W. R., & Kim, C. (2012). Numerical Simulations of the Impact and Spreading of a Particulate Drop on a Solid Substrate. Modelling and Simulation in Engineering, 2012, 1–10. doi:10.1155/2012/687961 
  • Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D., & Sun, C. (2015). Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter, 11(9), 1708–1722. doi:10.1039/c4sm02474e 
  • Kang, B. S., & Lee, D. H. (2000). On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface. Experiments in Fluids, 29(4), 380–387. doi:10.1007/s003489900104 
  • Bussmann, M., Mostaghimi, J., & Chandra, S. (1999). On a three-dimensional volume tracking model of droplet impact. Physics of Fluids, 11(6), 1406–1417. doi:10.1063/1.870005 
  • Mao, T., Kuhn, D. C. S., & Tran, H. (1997). Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE Journal, 43(9), 2169–2179. doi:10.1002/aic.690430903 
  • Rioboo, R., Tropea, C., & Marengo, M. (2001). Outcomes from a drop impact on solid surfaces. Atomization and sprays, 11(2). https://www.researchgate.net/profile/Marco_Marengo/publication/233883958_Outcomes_from_a_Drop_Impact_on_Solid_Surfaces/links/00b7d52f49587e9acd000000.pdf
  • Riboux, G., & Gordillo, J. M. (2014). Experiments of Drops Impacting a Smooth Solid Surface: A Model of the Critical Impact Speed for Drop Splashing. Physical Review Letters, 113(2). doi:10.1103/physrevlett.113.024507 
  • Antonini, C., Villa, F., & Marengo, M. (2014). Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps. Experiments in Fluids, 55(4). doi:10.1007/s00348-014-1713-9