Problem 17: Hand Helicopter

A simple hand helicopter can be made by attaching rotor blades to one end of a vertical stick. The helicopter moves upwards when the stick is twisted at a high enough speed
and then let go. Investigate how the relevant parameters affect the lift-off and the maximum height.

I. Phenomenon Demonstration

II. Books, Encyclopedia, Discussion and Forum Posts

III. Research Papers

  • Rotaru, Constantin & Todorov, Michael. (2018). Helicopter Flight Physics. 10.5772/intechopen.71516.
  • Perera, Pramith. (2018). Helicopter Main Rotor aerodynamic simulation with CFD.
  • Pandey, Krishna & Kumar, Upendra & Kumar, Gaurav & Deka, Dhrubajyoti & Das, Dipankar & Surana, Anand. (2012). CFD Analysis of an Isolated Main Helicopter Rotor for a Hovering Flight at Varying RPM. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 1. 10.1115/IMECE2012-89227.
  • Zhou, C., & Chen, M. (2020). Computational fluid dynamics trimming of helicopter rotor in forward flight. Advances in Mechanical Engineering. https://doi.org/10.1177/1687814020925252
  • Ma, Y., Chen, M., Wang, Q., & Wang, F. (2018). Main helicopter rotor trimming using computational fluid dynamics method in forward flight. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(1), 169–179. https://doi.org/10.1177/0954410016673394
  • Wagner, S., Keßler, M., Altmikus, A., Pomin, H., Ostertag, J., Eckart, B., Fischer, A., & Landmann, B. (2004). CFD – a key element of helicopter activities at the IAG. Aerospace Science and Technology, 8(2), 121-130. https://doi.org/https://doi.org/10.1016/j.ast.2003.10.005
  • Steijl, Rene & Barakos, George & Badcock, K. (2006). A framework for CFD analysis of rotors in hover and forward flight. International Journal for Numerical Methods in Fluids. 51. 10.1002/fld.1086.
  • A. C. B. Dimanlig, H. Saberi, E. T. Meadowcroft, R. Strawn and M. Bagwhat, “Multidisciplinary Modeling of the CH-47 Helicopter with CFD/CSD Coupling and Trim,” 2008 DoD HPCMP Users Group Conference, Seattle, WA, 2008, pp. 143-149, doi: 10.1109/DoD.HPCMP.UGC.2008.73.
  • FARROKHFAL, Hamid and PISHEVAR, Ahmad Reza. A New Coupled Free Wake-CFD Method for Calculation of Helicopter Rotor Flow-Field in Hover. J. Aerosp. Technol. Manag. [online]. 2014, vol.6, n.2 [cited 2020-09-13], pp.129-147. Available from: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462014000200129&lng=en&nrm=iso>. ISSN 2175-9146. https://doi.org/10.5028/jatm.v6i2.366.
  • Embacher, Martin, Kebler, Manuel, Dietz, Markus, & Kramer, Ewald. (2017). Coupled CFD-Simulation of a Helicopter in Free-Flight Trim. Zenodo. http://doi.org/10.5281/zenodo.813982
  • Leza, D.V. (2018). Development of a Blade Element Method for CFD Simulations of Helicopter Rotors using the Actuator Disk Approach.
    Biava, M., Khier, W., & Vigevano, L. (2012). CFD prediction of air flow past a full helicopter configuration. Aerospace Science and Technology, 19(1), 3-18. https://doi.org/https://doi.org/10.1016/j.ast.2011.08.007
  • Pandey, K. M., Kumar, U., Kumar, Gaurav, Deka, Dhrubajyoti, Das, Dipankar, and Surana, Anand. “CFD Analysis of an Isolated Main Helicopter Rotor for a Hovering Flight at Varying RPM.” Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerospace Technology. Houston, Texas, USA. November 9–15, 2012. pp. 543-551. ASME. https://doi.org/10.1115/IMECE2012-89227
  • Jimenez-Garcia, A., Biava, M., Barakos, G., Baverstock, K., Gates, S., & Mullen, P. (2017). Tiltrotor CFD Part II – aerodynamic optimisation of tiltrotor blades. The Aeronautical Journal, 121(1239), 611-636. doi:10.1017/aer.2017.21
  • Pagano, A. (2015). Aerodynamic shape optimization of tiltrotor blades equipped with continuous morphing aerofoils.
  • Biava, M., & Vigevano, L. (2012). Simulation of a complete helicopter: A CFD approach to the study of interference effects. Aerospace Science and Technology, 19(1), 37-49. https://doi.org/https://doi.org/10.1016/j.ast.2011.08.006